BASIC MENSURAL NOTATION REFERENCE BY TED DUMITRESCU (MAY 2004)

I. RHYTHM

- NOTE SHAPES -

Name	Maxima	Long	Breve	Semibreve	Minim	Semiminim	Fusa	Semifusa
Note	F	П	п	\$	\$	or \$	1	\$
Rest		$\frac{1}{2}$ or $\frac{1}{2}$					<u></u>	

- LIGATURES -

1. Basic ligatures with no stems

a. Two-note ligatures:

b. Ligatures of more than two notes:

- Beginning and ending notes follow the rules for two-note ligatures
- Every note in the middle is a Breve (#)

Example:

2. Stems and other effects

- a. At the beginning of a ligature:
- An upward stem to the left always makes the first two notes Semibreves (*)

Examples:

 A downward stem to the left makes the first note a Breve (#)

Example:

b. At the middle or end of a ligature, a stem is always downward, and turns the note to the left into a Long (7)

Examples:

c. Any stretched notehead is a *Maxima* (=)

Example:

BBM BE

STANDARD MENSURATIONS AND PROPORTIONS —

1. Mensuration

- O and C are the signs of perfect and imperfect *tempus*: i.e., whether a Breve (#) contains 3 or 2 Semibreves (*) by default
- Presence or absence of a dot (•) in the center of the *tempus* sign indicates major or minor **prolation**: i.e., whether a Semibreve (•) contains 3 or 2 Minims (•) by default

C (imperfect <i>tempus</i> , minor prolation):	$ \exists = \diamond \diamond = \d \d \d \d \d $
© (imperfect <i>tempus</i> , major prolation):	
O (perfect <i>tempus</i> , minor prolation):	
⊙ (perfect <i>tempus</i> , major prolation):	

- Major modus refers to the number of Longs (\(\frac{1}{2}\)) in a Maxima (\(\frac{1}{2}\)) (perfect is 3, imperfect is 2)
- Minor modus refers to the number of Breves (#) in a Long (†) (perfect is 3, imperfect is 2)
- Modus is detected most easily by observing how many Long rests are in a *Maxima* rest, and how many Breve rests are in a Long rest:

Imperfect major modus,	Imperfect major <i>modus</i> ,	Perfect major <i>modus</i> ,	Perfect major <i>modus</i> ,
Imperfect minor modus	Perfect minor modus	Imperfect minor <i>modus</i>	Perfect minor modus
_			
			
\pm	#	\pm	##

2. Other signs and proportions

• *Modus cum tempore* signs use the circle to show **minor** *modus* and a numeral to show *tempus*:

C2 = Imperfect minor <i>modus</i> , Imperfect <i>tempus</i>	C3 = Imperfect minor <i>modus</i> , Perfect <i>tempus</i>
O2 = Perfect minor <i>modus</i> , Imperfect <i>tempus</i>	O3 = Perfect minor <i>modus</i> , Perfect <i>tempus</i>

- Under these mensurations, the tempo is quicker and the beat is on the Breve
- A numeral or pair of numerals changes the speed of a part proportionally; e.g., 3 2 changes the speed so that 3 notes are sung in the time of 2 (usually Semibreves or Minims)
- Shorthand proportion signs:

$$O = 4:3$$
 $3 = 3:2$ $2 = 2:1$

- When the sign \mathbb{C} or \mathbb{O} appears in one or more voices simultaneously with \mathbb{C} or \mathbb{O} in other voices, the music in \mathbb{C} or \mathbb{O} is twice as fast as the other voices (2:1 diminution)
- By the late 15th century ℂ or ℂ in all voices at once often indicates some type of speeding up

- IMPERFECTION AND ALTERATION —————

1. Imperfection: Taking away 1/3 of the length of a ternary note

From the back ("a parte post"):	From the front ("a parte ante"):
○ HH♦H = o · o o ·	O O H O O O O O O O O O O O O O O O O O
○ ♦ ♦ ♦ Ħ = J J J . • ·	© \$ \$ \$ \$ \$ \$ B = \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
By smaller values:	From both sides:
$\bigcirc $	
"Like before like" ("similis ante similem") is never imperfected:	By "remote parts" ("a partibus remotis"):
© \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	© H ♦ ♦ ♦ H = 0
Never by a ternary group:	Rests are never imperfected (but they can imperfect notes):
○ H ♦ ♦ ♦ H = 0 .	○ I T H ♦ ♦ ♦ H = ■ . ■ o

2. Alteration: Doubling a note value to complete a ternary grouping

	Between two perfect notes, always occurs:
$\bigcirc \Diamond \Diamond \Box = \langle o o \cdot $	$\bigcirc \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
○ ♦ ♦ ♦ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	© ♦ ♦ ♦ ♦ ♦ ♥ Ħ = d. ♣ • • • • • • • • • • • • • • • • • •
Always the last possible note:	Rests are never altered:
O	

DOTS —

1. Dot of Addition ("punctus augmentationis/additionis")

- Increases the length of a note by half (like the modern dot)
- Can only be applied to binary note values (e.g., a Semibreve under O)

$$\bigcirc \diamond \diamond \cdot \diamond \Box = \bigcirc \bigcirc \cdot \bigcirc \bigcirc \circ \cdot \bigcirc$$

2. Dots of Division/Perfection/Alteration/etc.

- Act as measure dividers for ternary values (e.g., a Semibreve under ©)
- In order to separate ternary groups, can force imperfection and alteration or prevent them

$$\bigcirc \lozenge \lozenge . \lozenge \lozenge \lozenge \lozenge = 0$$

The rare punctus reductionis or syncopationis (dot of syncopation) can appear in the middle of a ternary group; by preventing alteration or imperfection it causes syncopation

$$\mathbb{C} \left\{ \cdot \left\{ \cdot \right\} \right\} \cdot \left\{ \exists = \left[\cdot \right] \right\} = \left[\cdot \right] \cdot \left[\cdot \right]$$

COLORATION ————

1. Imperfection coloration

- At ternary mensural levels, colored notes are always imperfect and cannot be doubled through alteration
- Colored notes are often found in groups adding up to pairs of ternary measures
- Dots in coloration groups are dots of addition (affecting the imperfect, unaltered values)

$$0 + \mathbf{n} + \mathbf{n} + \mathbf{n} = \mathbf{o} \cdot |\mathbf{o} \cdot \mathbf{o}| \mathbf{o} \cdot |\mathbf{o} \cdot \mathbf{o}|$$

Such groups fall at measure beginnings, causing alteration if necessary

$$\bigcirc \lozenge \lozenge \parallel \blacksquare \blacksquare = \bigcirc \bigcirc \bigcirc \bigcirc . \cup \bigcirc \bigcirc \bigcirc \bigcirc . \parallel$$

2. Proportional coloration

4

- For binary note values, coloration takes away 1/3 of the value (creating modern triplets)
- The rules for imperfection coloration still apply (all notes imperfect, no alteration)

$$C \diamond \diamond \bullet \bullet \diamond H = dd[dd] \circ || C \diamond \diamond \diamond \diamond \bullet \bullet \Leftrightarrow H = dd[dd] \circ ||$$

Some special cases (later 15th and 16th centuries):

$$\mathbb{C} \blacksquare \blacklozenge = \lozenge \cdot \lozenge$$

II. PITCH

Gamut	Hexachords						Note names	Principal clefs	
ee							la	ee la	
dd						la	sol	dd la sol	
CC						sol	fa	cc sol fa	
ЬЬ/ ֈֈֈ						fa	mi	bb fa hh mi	
aa					la	mi	re	aa la mi re	_
g					sol	re	ut	g sol re ut ———	II.
f					fa	ut		f fa ut	
е				la	mi			e la mi	
d			la	sol	re			d la sol re	,
С			sol	fa	ut			c sol fa ut ———	
b/ ၝ			fa	mi				b fa ∮ mi	,
а		la	mi	re				a la mi re	
G		sol	re	ut				G sol re ut	
F		fa	ut					F fa ut ———	中 ・ つ:
E	la	mi						E la mi	
D	sol	re						D sol re	
С	fa	ut						C fa ut	
Ь А	mi							l	
Á	re							A re	
Γ	ut							Гut ———	Γ

- In any hexachord, the step mi fa is a semitone; every other step is a whole tone
- The sign b ("round b") marks a note as fa, which means it is only a semitone above the step below it; usually this means the marked note must be flattened by a semitone

• The sign \(\frac{1}{2}\) ("square b") marks a note as \(mi\), which means it is a semitone below the step above it; this usually causes the marked note to be sharpened by a semitone, cancelling the effect of \(\frac{1}{2}\) if necessary

• The sign \times ("dyesis") simply causes a note to be sharpened by a semitone, without necessarily changing the hexachord syllable; it is often used loosely, however, with the same meaning as \natural

DIRECTED PROGRESSIONS -

- In counterpoint, when an imperfect consonance (3rd, 6th) moves to a perfect consonance (unison, 5th, octave), the imperfect consonance should be performed as major or minor in order to approach the perfect consonance with the smallest movement (e.g., a 6th expanding to an octave should be major, a 3rd contracting to a unison should be minor)
- Sharps and flats can be performed to ensure this type of "closest approach"

MELODIC LEADING TONES -

- The "returning note" melodic phrases *re ut re*, *sol fa sol*, and *la sol la* should be performed with a sharp leading tone (raising the lower neighbor note by a semitone)
- Such melodic phrases often appear in ornamented forms, which require the same sharpening

- PERFECT INTERVALS IN COUNTERPOINT -

- In counterpoint, "false consonances" (augmented and diminished perfect consonances) between two voices are to be avoided: augmented and diminished 5ths, octaves, unisons
- If the default reading produces a false consonance, one voice should lower its pitch by a semitone and call that note fa, which will produce a perfect consonance

PERFECT MELODIC INTERVALS —

1. Melodic phrases

• If a melodic phrase outlines a tritone (an augmented 4th, e.g., F fa - $\frac{1}{3}$ mi), the higher note should be lowered by a semitone and called fa, to make a perfect 4th

• If the phrase continues by step in the same direction to complete a melodic 5th, no flattening is necessary

2. Leaps

• Leaps of a 4th, 5th, and octave should be rendered as perfect intervals, using flattening (with the syllable *fa*) if necessary

